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Abstract 

The award of the Nobel Prize for Chemistry to two 
pioneers of direct methods, H. Hauptman and J. 
Karle, has been a recognition of the importance that 
these methods have attained, in crystallography in 
particular and in science generally. The development 
of direct methods is traced from its first beginnings 
with Harker-Kasper inequalities and the Karle & 
Hauptman determinantal inequalities. The range of 
application of these methods to centrosymmetric 
structures was much increased by the introduction of 
the sign relationship by Sayre, Cochran and 
Zachariasen and an ACA Monograph by Hauptman 
& Karle to which the origins of the application of 
direct methods may be traced. Sayre's paper, in 1952, 
developed an exact equation which applied to both 
centrosymmetric and non-centrosymmetric structures 
as did the Karle & Hauptman determinantal 
inequalities. However, it was the derivation of the 
probability distribution for an individual three-phase 
relationship by Cochran in 1955 and the tangent 
formula by Karle & Hauptman in 1956 which pro- 
vided the weaponry to tackle non-centrosymmetric 
structures, but nothing decisive was done until, in 
1964, I. L. Karle & J. Karle solved the first non- 
centrosymmetric structure with direct methods using 
their symbolic addition procedure. The advent of the 
computer allowed automatic multisolution pro- 
cedures, such as M U L T A N ,  S H E L X  and SIMPEL,  
to take over as the main tools for the solution of small 
structures. Various developments since about 1970 
have slowly introduced direct-methods concepts into 
the field of solving macromolecular structures, start- 
ing with the maximum-determinant method of 
Tsoucaris and progressing to the still experimental 
maximum-entropy method. Various predictions are 
made about the progress .of direct methods in the next 
few years. A new tangent formula, the Sayre tangent 
formula, which gives most of the benefit of the 
maximum-entropy method but is much easier to 
apply, is suggested as a possible new source of pro- 
gress. Other progress may be made in the association 

* Editorial note: This invited paper is one of a series of compre- 
hensive Lead Articles which the Editors invite from time to time 
on subjects considered to be timely for such treatment. 

of direct methods with physical methods, such as 
isomorphous replacement and anomalous scattering, 
following work which has already been done over the 
past few years. 

Prologue 

The first experiments on the scattering of X-rays by 
a crystal, performed by Friedrich and Knipping in 
1912 at the instigation of von Laue, were only con- 
cerned with exploring the periodicity in a crystal. 
Shortly afterwards, on the spectrometer built by W. 
H. Bragg, spectra were measured for some alkali 
halides and the Braggs solved these simple structures 
requiring only the concepts that various sets of atoms 
were scattering either in phase or rr out of phase with 
each other for each of the diffracted beams. 

In 1913 at a Solvay Conference devoted to the new 
subject of X-ray crystallography, Sommerfeld gave, 
in principle, the structure-factor equation 

N 

F ( h ) =  ~ fj exp (27rih.rj), (1) 
j = l  

where fj is the scattering factor of the j th atom and 
rj its vector position (with fractional coordinate com- 
ponents) in a unit cell containing N atoms. 

The structure factor, F(h), is a complex quantity, 

F(h) = IF(h)l exp [i~(h)], (2) 

and the observed intensity I(h) is proportional to the 
structure amplitude squared, [F(h)] 2, with the con- 
stant of proportionality depending on several physical 
factors - temperature, absorption, diffraction geom- 
etry etc. - whose effects can be estimated quite well. 

From (1), if one is given the types and positions 
of atoms in the unit cell, it is possible to calculate 
the expected values of the observed quantities I(h). 
However, what is required in practice is the solution 
of the inverse problem: if one is given the intensities, 
then how can the positions of the atoms be found? 
If the information available is a complete set of struc- 
ture factors in both magnitude and phase then the 
problem is readily solved. In his Bakerian lecture to 
the Royal Society in 1915, W. H. Bragg suggested the 
use of the Fourier series in crystal-structure analysis. 
Thus the electron density at a point r in the unit cell 

0108-7673/87/050593-20501.50 © 1987 International Union of Crystallography 



594 DIRECT M E T H O D S -  FROM BIRTH TO MATURITY 

is given by 

p(r)=(1/V)~ F(h) exp (-2zrih.  r) (3) 
h 

or, in an alternative form, 

p(r)=(1/V) ~lF(h)[cos[E~rh.r-~p(h)], (4) 
h 

where the summation is over all observed reflexions. 
Experiments can give the structure amplitudes, 

IF(h)l, but not the phases, ~p(h), and this constitutes 
the phase problem in crystallography. The earliest 
attempts to solve the phase problem were by trial-and- 
error methods - essentially guessing a structure and 
then seeing whether calculated intensities agreed with 
those observed. At best this could only be applied to 
simple structures where some outside information 
was available - for example, from symmetry. 

The Patterson function (Patterson, 1934) not only 
provided an important new tool for structure analysis 
but indicated that, in principle at any rate, the data 
alone were capable of giving the structure. Multiplica- 
tion of each side of (1) by its own complex conjugate 
gives 

N N 

IF(h)l 2= E Y. f, fj exp [2~-i(r,-rj)],  (5) 
i = l j = l  

and by the same process that relates (4) to (1) we can 
derive a Fourier (Patterson) map 

P(r)  = (1/ V) E IF(h)12 cos (2.r,'h . r), (6) 
h 

which gives a peak at each interatomic position r i - r j  
with a weight proportional to ZiZ~. It was shown by 
Wrinch (1939) that knowledge of the complete vector 
set would automatically reveal the structure. In prac- 
tice a Patterson map is usually so overcrowded that 
individual peaks cannot all be recognized but with 
an infinite amount of data, i.e. infinite resolution, they 
could be found and hence yield the structure. 

In cases where the structure contains a few heavy 
atoms, or high symmetry, then associated peaks can 
be found and, with the heavy-atom or symmetrical- 
group coordinates available, the whole structure can 
usually be solved. Another procedure, which also uses 
the Patterson map, is that of isomorphous replace- 
ment where two structures differ only in that one 
atom, or group of atoms, in one of them is replaced 
by a different kind of atom, or group, in the other. 
The differences in the magnitudes of structure factors, 
or intensities, from the two structures can be used as 
coefficients in a Patterson map to show the position 
of the isomorphously-replaced atoms. Isomorphism 
can be obtained with protein structures by chemically 
attaching residues carrying heavy atoms (e.g. Hg) at 
various points within them. The multiple-isomor- 
phous-replacement method, which uses several sets 
of isomorphous data, is largely responsible for the 
many triumphs of protein structural crystallography. 

There were early attempts to obain interatomic 
vectors directly from (5), in 1927 by Ott and in 1938 
by Avrami, but their methods could only be applied 
to trivial problems. However, the term 'direct 
methods' is usually taken to mean that class of 
methods which attempt by mathematical means to 
derive the phases of the structure factors using only 
the intensity information. Here we shall be describing 
the development of such methods from their earliest 
beginnings to their present comparatively advanced 
state. It should be said in advance that this survey 
will not be an exhaustive one; developments which 
seemed significant at the time, especially some of the 
earlier ones, have proved to be of little value and to 
describe them in detail would tend to be distracting 
rather than instructive. Instead, the major thread of 
the development of direct methods will be traced over 
the years and the history of the gradual evolution of 
these methods from being a primitive aid for the 
solution of simple structures to their present dominant 
role in structural crystallography will be related. 

In 1985 two pioneers of direct methods, J. Karle 
and H. Hauptman, were suitably honoured by the 
award of the Nobel Prize for Chemistry. In particular, 
the crucial role of their work in the successful growth 
of this field of science will be highlighted in the 
account which follows. 

The first few steps: 1948-1951 

It was perhaps appropriate that the published paper 
which heralded the birth of direct methods appeared 
in the first issue of Acta Crystallographica, the journal 
of the newly-formed International Union of Crystal- 
lography which now carries so much of the fruit of 
that seedling. This paper, by Harker & Kasper (1948), 
presented inequality relationships between structure 
factors which, in some cases, could give unambiguous 
phase information. 

For the purposes of direct methods the normal 
structure factor is not the best one to use. It is better 
to consider structure factors corresponding to point 
atoms (electron density a ~ function) with no thermal 
motion. The scattering factor for such an atom is the 
same for every reflexion and there is no tendency for 
the resultant structure factors systematically to fall 
off with increasing scattering angle. Two such struc- 
ture factors are in common use. The first is the unitary 
structure factor, U(h), which satisfies the relationships 

N 
2 (7a) <lul=> = E nj 

j=l  

where 

nj= fj 
j 1 

is the unitary scattering factor and 

0_<lul<-l. (7b) 
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The second kind, and latterly the more important, is 
the normalized structure factor, E(h), which satisfies 
the relationships 

( E 2)= 1 (8a) 

and, for equal atoms, 

E(h)=NI/EU(h). (Sb) 

Harker & Kasper used well-known mathematical 
inequalities, mainly the Cauchy inequality, 

ajbj <_ T~ ajl=x % b~l ~, (9) 
j = 1  j = I  j = l  

together with the structure-factor equations which, 
with space-group information included, could take 
on forms other than that shown in (I). Thus, for space 
group P1 containing just a centre of symmetry, 

N 

U(h)= Y. n jcos(2wh.r j ) ,  (10) 
j----I 

and by applying the Cauchy inequality in different 
ways one finds 

U(h)2-< ½[1 + U(2h)] ( l l a )  

and 

[ U(h)+ U(k)] 2 <-[1 ± U(h+k)][1 + U ( h - k ) ] .  

( l lb )  

For a centrosymmetric structure with the centre of 
symmetry at the origin the structure factors are real 
and, instead of the phase ~0(h), we can think of the 
sign, s(h), of the structure factor, where ~ ( h ) = 0  
corresponds to s (h)= +1 and ~(h)=  w corresponds 
to s(h) = -1.  In terms of signs, where all the involved 
unitary structure factors are non-zero, inequality 
1 l(b) can be written 

[ U(h) +[U(k) [ ]  2 

--<[1 + s(h)s(k)s(h+k) U(h+k)  ] 

x [ l + s ( h ) s ( k ) s ( h - k ) l U ( h - k  ) ], (12) 

and if the I U ' s  are sufficiently large then it may be 
shown that 

s(h)s(k)s(h+k)= 1 ( laa)  

and/or 

s(h)s(k)s(h-k)= 1. (13b) 

Relationships (13) did not appear in the original work 
of Harker & Kasper (1948), although they were 
implicit in their results. 

Similarly, if IU(h)l and IU(2h) are large enough 
then it can be shown from (11 a) that s(2h) is positive. 

The drawback of these inequality relationships is 
that they are only useful for structures with few atoms. 
For N equal atoms in the unit cell then ( U 2) = 1 / N  
and only few reflexions will have U with value 

greater than three times the r.m.s, value of U. Thus 
with N = 64 there will be a few I UI values greater 
than 0.4 and not many, if any, inequality relationships 
will be found. 

Other types of algebraic inequality formulae have 
been used to give inequality relationships between 
structure factors, notably by Gillis (1948), Okaya & 
Nitta (1952) and Sakurai (1952). However, they are 
never more powerful than the basic Harker-Kasper 
inequalities and have been little used. 

Two years after the Harker-Kasper paper there 
appeared an important paper by Karle & Hauptman 
(1950) on determinantal inequalities. The underlying 
basis for this was quite old (Toeplitz, 1911) but, in a 
familiar form, it gives the result that for a Fourier 
summation to give a function everywhere non-nega- 
tive then, for any order of determinant, n + 1, 

F(0) F(-h~) F(-h2) . . - F ( - h . )  
[F(h~) F(0) F(hl-h2) . . .  F(h~-h,,) 
F(h ) .F(h2-ht) F(0) F(h2-hn) >--(), (14) 

• 

IF(h,) F(h,,-h~) F(h,-h2) . . .  F(0) 

where the terms in the leading column must be 
different (but can be symmetry-related) structure fac- 
tors. It will be noted that the elements form an 
Hermitian matrix and hence the value of the deter- 
minant is real. Since the U's (and E's) correspond 
to point atoms then the inequality can be written in 
terms of these quantities. 

One order-three determinant which can be formed, 
with U(0) -- 1, is 

1 U( -h )  U(-2h)  

U(h) 1 U(-h)  ->0, (15a) 

U(2h) U(h) 1 

which, when expanded, gives the Harker-Kasper 
inequality (11a). Another determinant is 

1 U( -h l )  U(-h2) 

U(h~) 1 U(h~-h2) ->0, (15b) 

U(h2) U ( h E - h l )  1 

which gives for a centrosymmetric structure 

1 -  U(hl) 2 -  U(h2) 2 -  U(hl -h2)  2 

+2U(h~)U(h2)U(hz-h2)>-O. (15c) 

This was the first explicit appearance of the product 
of three signs which played so dominant a role in 
subsequent development. 

For large U magnitudes this can yield the con- 
clusion (13b) but, it will be noticed, not in conjunc- 
tion with (13a), as it can be with the Harker-Kasper 
inequality. 

To obtain a greater insight into the information 
contained in the inequality (15b) it can be recast in 
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a form given by Karle & Hauptman (1950): 

I U(hl) - U(h2) U(h , -h2) l  

<- U(h2) 1 U(h, - h2) 

U (h2 - hl) [ 1 / 2 1  

(16a) 

which is of the form 

I U(h , ) - ,~ l  ~ ,'. (16b) 

The meaning of (16b) can be seen in Fig. 1, which 
shows the possible values of U(hl) in the complex 
plane. This puts a restriction on the phase of U(hl) 
and, if r is small, we find that 

q~(hl) = ~,(h2)+ ~,(h~-h2). (17) 

For a reasonably complicated structure one would 
normally find the point C close to the origin and the 
radius of r so large that no phase angle, ~0(h~), is 
excluded. However, as we shall see later even this 
does not completely negate the relationship (17). 

In their 1950 paper Karle & Hauptman showed 
that the form of expression (16b) can also be found 
for high-order determinants. The values of 8 and r 
then become functions of determinants found from 
the main determinant by moving rows and columns 
- and other changes. All that need be noted here is 
that if a large body of phase information is already 
available so that 8 and r can be evaluated then, in 
principle, r can be very small, or even zero, and ~o(hl) 
may then be determined with precision. 

There is a great deal of information inherent in the 
determinantal inequalities and much subsequent 
development in the theory of direct methods has been 
found to be an aspect of what they contain - albeit 
that the connection is not always blindingly obvious. 

We have already seen that an inequality relation- 
ship is capable of restricting the range of values of a 
general phase without restricting it to a particular 

value, as in (17). For a centrosymmetric structure the 
only possible phases can be represented by s(h) = +1 
or -1  so that the idea of restricting to a range does 
not apply. However, Gillis (1948) made the point 
that, even when the structure factors were not of 
sufficiently large magnitude to define the sign of a 
particular structure factor or product of structure 
factors, there might still be an implication, from the 
near-validity of the inequality, that the sign has a 
particular value. We shall see that this is true and we 
shall now follow the development of probability 
relationships between structure factors. 

Setting the stage: 1952-1956 

Some very simple centrosymmetric structures could 
be solved by Harker-Kasper  inequalities but by and 
large they made little impact in the practical area of 
solving crystal structures. The Patterson function still 
reigned supreme, and, since most calculations were 
being done by hand, using Beevers-Lipson strips at 
best, nearly all structures were being solved from 
two-dimensional projections. It should be mentioned 
here that a critical element of thinking, which added 
greatly to the impetus in developing direct methods, 
was the realization that the problem was greatly over- 
determined. To the condition of non-negativity there 
could be added that of atomicity; with this the number 
of observations exceeds the number of degrees of 
freedom and in principle, the problem becomes 
soluble (Hauptman & Karle 1950a, b). Three impor- 
tant papers which appeared in the same issue of Acta 
Crystallographica - by Sayre (1952), Cochran (1952) 
and Zachariasen (1952) - incorporated the concept 
of atomicity and heralded a new stage in the develop- 
ment of direct methods. The paper by Sayre was the 
most fundamental. Sayre considered the result of 
squaring the electron density of a structure consisting 
of equal resolved atoms. This is shown in Fig. 2; it 
is clear that the squared structure resembles the 
original structure in having equal peaks in the same 

Fig. 1. The Karle-Hauptman determinant inequality indicates that 
U(h) must be somewhere on the thickened arc. 

/92 

Fig. 2. The basis of the Sayre equation. For equal atoms p and p2 
both show equal resolved regions of density. 
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positions but with peaks of different shape. Using the 
well known theorem that the Fourier transform of a 
product of two functions is the convolution of the 
Fourier transforms of the individual functions Sayre 
arrived at the expression 

F(h) = 0(h) E F ( k ) F ( h -  k), (18) 
k 

where 0(h) can be determined for atoms of known 
shape. Equation (18) is known as Sayre's equation 
and relates the structure factors exactly if, and only 
if, the structure consists of equal resolved atoms. 

At first glance it seems that Sayre's equation would 
lead directly to the phases of structure factors if in 
some way a set of phases could be found which makes 
all the equations hold. In his paper Sayre actually 
found the signs of structure factors for a centrosym- 
metric projection of hydroxyproline, but it was not a 
straightforward task and was not helped by the fact 
that the projection did not consist of equal resolved 
atoms. 

The approach by Cochran (1952) was a little more 
intuitive. He argued that a correct electron-density 
distribution would contain large near-zero regions 
with the density concentrated around the atomic posi- 
tions. He interpreted this as having the quantity 

p3 dV large and positive, (19) 
v 

where the integration is taken over the whole unit 
cell. It may be shown that (19) is equivalent to having 
a large value of 

Q = E Z  F(h)F(k)F(-h-k).  (20) 
h k 

For a centrosymmetric structure the value of Q will 
be large if, in general, the contributors to the summa- 
tion are positive, and this led Cochran to the triple- 
product sign relationship (TPSR) 

s(h)s(k)s(h+ k) ~ +1, (21) 

where ~ means 'probably equals'. 
Zachariasen (1952) also arrived at relationship 

(21), although by somewhat flawed reasoning. An 
important contribution made by him was to demon- 
strate an effective method of using the TPSR to solve 
the structure of metaboric acid. 

Zachariasen used letter symbols to represent 
unknown signs and by applying inequality relation- 
ships to three-dimensional data he was able to rep- 
resent 40 signs in terms of five letter symbols. He then 
applied an extension of relationship (21), 

s(h)~ s [~ s(k)s(h-k)], (22) 

where the terms on the fight-hand side of (22) were 
pairs of known signs giving an indication for s(h). 

Thus if the contributors on the right-hand side were 

ab ab ab ab ab cd cd cd + 

then it would be deduced that s(h) ~ ab, that abcd is 
very probably positive and that the products ab and 
cd might be positive. By this kind of process 
Zachariasen was able to extend the knowledge of 
signs and to find a unique set for the 168 largest [U] 
values. By an exactly similar process Cochran & 
Penfold (1952) solved the structure of L-glutamine. 

In the following year Hauptman & Karle (1953) 
produced a monograph which was to be quite influen- 
tial - even if its title was somewhat optimistic! In this 
monograph they introduced the normalized structure 
factor E, to which reference has already been made. 
The distribution of [E['s is independent of structural 
complexity and the theory and practice of direct 
methods is greatly simplified by their use. The main 
conclusions they reached was that the sign of E(h) 
was given by ~ + ~ 2 + ~ 3 + ~ 4 ,  where 

~1 = (Or3/40"3/2) ~, [ E ( h . ) 2 - 1 ]  (23a) 
h~, =h/2 

~2 = (tr3/2tr3/2 ) E E (h,.)E (hi,) (23b) 
h~+h~ =h 

~3 -" (or4/40r2) ~, E(h~)[E(h~)2-1] ( 2 3 c )  
h~+2hv=h 

~4 = (trs/Str25/2 ) ~. [ E ( h , ) 2 - 1 ] [ E ( h ~ ) 2 - 1 ]  
2h~+2hv=h 

(23d) 

and o-, = Y-j~I z~, where zj is the atomic number of 
the jth atom. 

Although these equations were derived by proba- 
bility theory they do have interpretations in terms of 
physical functions. The quantity [E(h)[2-1 is the 
Fourier coefficient of a Patterson function with its 
origin peak removed and the four summations, if all 
terms are included on the right-hand side, are related 
respectively to the Patterson function, the squared 
electron density, the product of electron density with 
a half-scale Patterson function and the square of the 
Patterson function. 

Associated with these formulae, Hauptman & Karle 
derived probability expressions but the final approxi- 
mation they presented did not constrain the probabil- 
ity that s(h) was positive within the necessary limits 
of zero and unity. The first probability formula for a 
single TPSR, which was valid within the limitations 
imposed by use of the central-limit theorem and only 
for equal-atom structures, was given by Woolfson 
(1954), but a formula valid for non-equal atoms was 
given by Cochran & Woolfson (1955) in the form 

P+(h,k)=½+½tanh[(ea/e 3) U(h)U(k)U(h+k) ] 
(24) 

where 
N 

/1 
e~ = E n~. 

j= l  
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The same workers found an expression that s(h) is 
positive, given many pairs of contributors on the 
right-hand side of (23b), in the form 

~+~tanh U ( k ) U ( h - k )  . 
k 

(25) 

These equations are valid only for structure factors 
with magnitudes well away from the region where 
inequalities would hold; a much more precise analy- 
sis, giving formulae valid over a much larger range, 
was given by Klug (1958). 

During the years this theory was being developed 
the first practical computers were becoming available. 
Cochran & Douglas (1955) designed the first direct 
method to run on a computer. The machine they had 
available was the EDSAC I which offered a store of 
1024 17-bit words, no backing store, no floating-point 
capacity, an add time of 1 ms and a multiplication 
time of 3 ms. Because of its historical interest we shall 
briefly look at their algorithm. They started with 20 
structure factors for a projection (pgg) of salicylic 
acid; two signs could be chosen to fix the origin and 
two others were fixed by the equivalent of Hauptman 
& Karle's ~ formula. The 20 structure factors, the 
unknown signs of which were indicated by x~ to x~6, 
were linked by 29 TPSR's whose signs were indicated 
by s~ to $29. 

Equations could be found of the form 

S 1 - -  - - X I X 9 X 1 5  ~ S 2 ~ X 1 X 2 X 1 2  etc., 

and by a suitable selection of the TPSR's it was 
possible to express each x as a product involving only 
sl to s~6 (set A), thus: 

X 1 : S 1 S 3 S 4 S 5 S 7 S 8 S 9 S l O S I 2 S I 3 S I s S 1 6  

X 2 ~. ~ S I S 2 S 3 S 4 S 8 S 9 S  1 I S 1 2 S 1 5 S 1 6  

X I 6  -"  S 1 S 2 S 3 S 5 S 7 S 9 S 1 0 S 1 3 S 1 5 S 1 6  , (26a) 

and the remaining s values (set B) also in terms of 
sl to s16 appear as 

S17 = $ 4 S  6 

S18 = SIISI3SI4 

S 2 9 - "  S I S 2 S 3 S 5 S 7 S 9 S 1 0 S 1 3 S 1 5 S 1 6 .  (26b) 

On the basis of probability formula (24) it was con- 
cluded that not more than three of set A should be 
negative and not more than five of the total set A + set 
B. First it is assumed that sl to s16 are all positive 
and these signs are substituted in (26b). If five or less 
of these 13 s's are negative then the solution is accep- 
table and the x's found from (26a). Next are con- 
sidered, one at a time, the 16 ways in which one of 

the members of set A can be negative, and if one of 
these leads to four or less of set B being negative 
then again an acceptable set of signs is found. Explor- 
ing up to three failures in set A required the 
examination of 697 possibilities and 24 sets of signs 
were acceptable under the criteria being used. 

The Cochran & Douglas (1955) procedure was the 
first multiple-solution method which systematically 
sought for a number of plausible sets of signs. While 
it is possible in principle to choose between them by 
computing electron-density maps and recognizing the 
correct structure it is better, and more economical, 
to find some figure of merit (FOM) to rank the solu- 
tions in order of plausibility. 

Cochran & Douglas examined two FOM's. The 
first of these was the value of 

X=~,~, U(h)U(k)U(h+k) (27) 
h k 

where the summation was over all TPSR's. It is a 
measure of how well the TPSR's hold but, in the very 
nature of the sign-determining process, X will be 
large for all plausible sets of signs; for salicylic acid 
X for the correct set was ninth largest out of the 24 
values. 

A better figure of merit was found to be the 'zero 
check'. This was the value of 

Z o = ~ [ ~  U(k) U ( h -  k)[, (28) 
h k 

where the terms of the summation were derived from 
the 20 structure factors whose signs were to be deter- 
mined and the outer summation was over a number 
of values o fh  for which I U(h)[ was zero or very small. 
The Zo figure of merit is related to Sayre's equation, 
for if all terms were included then the k summation 
would be zero, or small, for a correct set of signs. A 
low value of Zo is therefore expected, and it was 
found that it was a very effective FOM. 

In the early years of the application of direct 
methods attention was very much fixed on the cen- 
trosymmetric problem, and, although relationships 
between general phases were implicit in many of the 
inequalities and other formulae being produced [ e.g. 
equation (17), derived from the Karle & Hauptman 
determinantal inequalities], there was no clear state- 
ment of how general phases might be related. Even- 
tually this was given by Cochran (1955). The form 
was that the quantity 

• 3(h, k) = ~(h) + ~(k) + ~ ( h + k )  (29a) 

has a probability distribution 

P[~3(h,  k)] - exp { -  K (h' k) c°s [ q~3(h' k)]} (29b) 
27rlo[K (h, k)] 

where 

K=2(tr3/tr3/2)[E(h)E(k)E(h+k)l (29c) 
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and Io is a modified Bessel function of the second 
kind. 

An alternative form of (29a), obtained by changing 
the form of indices somewhat, is 

~o(h) = tp(k) + ~o(h- k), (30) 

and then the probability distribution, shown in Fig. 
3, is for the values of ~o(h). The general form of the 
distribution is that as K increases so the variance of 
the distribution decreases, i.e. the value becomes more 
highly constrained near the expectation value. 

The concluding step in this setting-of-the-stage era 
was again provided by Karle & Hauptman (1956). 
Relationship (30) gives a probable value for ~o(h) 
when there is a pair of known phases ~0(k) and 
~0 ( h -  k). What was now required was an estimate for 
~o(h) when several pairs of known phases were avail- 
able. This was given by Karle & Hauptman (1956) in 
the form of the tangent formula which, in a slightly 
modified form, is 

E K(h, k) sin [ ~o(k) + ~o(h- k)] 
tan [~0(h)] ~ k (31) 

K(h, k) cos [~(k) + ~o(h-k)] 
k 

It is interesting to note that Sayre (1952), in develop- 
ing signs by means of (18), carded out processes of 
looking at large TPSR's and gradually extending 
knowledge of signs which is paralleled in methods 
used at the present time. 

Crystallographers had now been given the tools 
but they were a long way from finishing the job. 

The doldrum years: 1957-1962 

After five years of spectacular progress there began 
a period, not completely barren by any means but 
comparatively so in contrast to what had preceded 
it. Such activity as there was mostly consisted of 
devising methods of using the TPSR to solve cen- 
trosymmetric structures or projections. For example 

P[(p (h)] 

/ 
J i - - - - - - "  

((p(h))-r (q:)(h)) (~a(h))+~ 

Fig. 3. The distribution function for ~o(h) given ~0(k), ~0(h-k) and 
the magnitudes of the three normalized structure factors. 
(~(h)) = ~(k) + ~ ( h -  k). 

for the two-dimensional space group pgg there could 
be pairs of sign relationships of the form 

and 

o r  

and 

s(4 3 0)s(3 i 0 )~  s(7 2 0) 

s(43 0)s(3 i 0 ) ~ s ( 1  40) 

s(4 i 0)s(3 3 0 ) ~  s(7 2 0) 

s(4 1 0)s(3 3 0) ~ - s ( 1  40). 

The conclusions drawn from each pair of relation- 
ships are contradictory but if, say, the magnitudes of 
the structure factors favour the first pair rather than 
the last then it may be deduced that 

s(7 2 0) = s(1 4 0). 

A much stronger situation would arise with one index 
in common for this space group. 

Consider the pair of relationships 

s( h k' O)s( h' k+ k' O) ~ s( h ' -  h k O) 

and 

s(h k' O)s(h' k + k' O)~(--1)h+k's(h'+ h k 0). 

This leads to the result 

s( h ' -  h k O) ~ (--1)h+k's( h' + h k 0), 

and several different k' can be used. If one parity of 
k' gives much stronger indications than the other then 
a clear relationship between s ( h ' -  h k 0) and s(h '+ 
h k 0) may be evident (Grant, Howells & Rogers, 
1957). A somewhat related method was devised by 
Woolfson (1958), but neither method could be regar- 
ded as decisive in advancing the effectiveness of direct 
methods. During this period small structures were 
being solved by the Zachariasen procedure and 
Woolfson (1961) proposed what he called the 'hit 
and miss' method. This was based on the observation 
that the solution of L-glutamine by Cochran & 
Penfold (1952) had begun with the determination of 
signs, in terms of symbols, for 13 of the largest struc- 
ture factors from inequality relationships. However, 
when the structure was solved and structure factors 
were calculated an interesting fact emerged. They had 
overestimated their U's, especially those at high 
angle, and not one of their assumed inequality 
relationships was valid. Woolfson therefore suggested 
that a way of proceeding would be to assume that a 
few of the strongest sign relationships were inviolable 
and symbols could then be used in the usual way to 
extend sign information. 

A small development, which does influence modern 
direct methods to some extent, was the introduction 
of the E map by Karle, Hauptman, Karle & Wing 
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(1958). This is a Fourier map with E replacing F and 
it has the effect of giving somewhat sharper peaks 
and enhancing the contribution of high-order 
reflexions whose phases have been estimated. There 
also results a considerable amount of background 
ripple, but this is in the region between the main 
peaks and causes no problems. An intrinsic part of 
most modern direct methods involves computation 
of E maps. 

A great deal of the early work of Karle & Hauptman 
was concerned with the estimation of structure 
invariants and structure semi-invariants (Hauptman 
& Karle, 1956, 1959; Karle & Hauptman, 1961). The 
former are quantities which are independent of the 
choice of origin in the unit cell, examples of which 
are IE(h)[, E(h)E(k,)E(h+ k) or the associated quan- 
tity q~(h) - q~(k) - q~(h- k). Structure semi-invariants 
are quantities which do not change value by transfer 
from one special origin to another - i.e. from one 
centre of symmetry to another in P1 or one of the 
eight origins in P2t2~2~ equivalently related to the 
symmetry elements. Examples of these are, for 
P1, E(2h), E ( h + k ) E ( h - k )  and, for P2~2~2t, 
~o(hl)  + 9 ( h 2 )  + Go(h3), where h i + h E + h a  = ( 0  0 0 )  

modulo(2 2 2). This work is crucial to origin and 
enantiomorph specification on which many methods 
depend for initiating phase determination. 

A formula for estimating the sum of three phases 
structure-invariant for P1 was given by Karle & 
Hauptman (1957) in the form, for the equal-atom 
case, 

[E (h)E (k) E ( h -  k)[ cos [ q~(h) - ~o(k) - tp(h - k)] 

= ( N 3 i 2 1 2 ) ( [ I E  (U)[ ~- 1]lIE (h + H)I ~- 1] 
× l i E ( h -  k + H)I 2 -1  ])n 

+ N-'/~[I E (h)l ~ + IE (k)l ~ + I E ( h -  k)l ~ -  2]. 
(32) 

In this equation the average is for H ranging over the 
whole of reciprocal space, and it would seem to be 
a way of involving the whole data set in the determina- 
tion of a single triple-phase invariant. This equation 
turns out to be somewhat unreliable and, indeed, the 
magnitude of the right-hand side can easily exceed 
the magnitude of the left-hand side by a large factor. 
The equation is clearly related to the Patterson func- 
tion and would be valid if the Patterson map had all 
peaks resolved - which never happens. However, (32) 
can be used as a preliminary sieve for judging the 
validity of the relationship 

• 3(h, k) = tp(h) - q~(k) - q~(h- k) ~ 0 (modulo 2 rr). 

(33) 

A large positive value on the right-hand side of (32) 
would support the validity of the triple-phase 
relationship (TPR); a large negative value would 
make its validity doubtful. 

It was said that these were the doldrum years and, 
in the sense that no critical new developments in 
phasing were published, this was apparently so. 
However, during this period a great deal of experience 
in solving structures was being accumulated - 
especially by Karle, Hauptman and their co-workers 
using the results of ACA Monograph No. 3 
(Hauptman & Karle, 1953). Experience gives under- 
standing and understanding leads to progress. Quietly 
the bulb had gathered its strength; the flowering was 
to come. 

Progress again: 1963-1969 

The method using symbols, suggested by Zachariasen 
with the modification suggested by Woolfson, became 
systematized and improved when Karle & Karle 
(1963) introduced the symbolic addition method for 
the solution of centrosymmetric structures. 

In this technique there is set up a starting set of 
reflexions with large ]El values, some fixing the origin 
whose signs can be specified and others which are 
assigned symbols to represent their signs. We shall 
illustrate this for the structure of jamine (Karle & 
Karle, 1964b) using material provided by I. L. Karle 
for a NATO Advanced Study Institute held in York 
in 1980. The starting set was 

h s(h) ]E(h)I 
1 ~ 7 + 3.76 "] 

? 2 1 4 + 6.88 
3 5 2 + 4.74 

0 2 10 a 2-63 
3 6 1 b 4.82 
0 1 9 c 2.28 
1 9  2 d 3.14 
0 2  2 f 2.30. 

origin fixing 

Karle & Karle set up what is now called a ~2 list [see 
(23b)], that is, a list of pairs of reflexions the product 
of whose signs give an indication of the sign of a 
reflexion with a particular vector index h. From these 
is constructed a table such that from the starting set 
of signs new sign indications may be found. For 
jamine the first ten steps in this process are: 

(1) 2 1 4 + (5) 1 1 7 + 
0 2 1 0  a 1 4 2 + 
2 1 6 a 2 3 9 + 

(2) 2 1 4 + (6) 3 5 2 + 
'[ 1 7 + 0 2 1 0  a 
1 2 11 + 3 3 8 a 

(3) 2 1 4 + 2 1 6 a 
3 5 2  + 1 4 2 + 
1 4 2 + 3 3  8 a 

(4) 1 1 7 + (7) 1 4 2 + 
3 5 2 + 0 2 10 a 
4 4 5 + 1 2 12 a 
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(8) 1 1 7 
0 2 10 
1 1 3 

4 4 5 
3 3 8 
1 1 3 a 

2 3 9 + 
1 2 12 a 
1 1 3 a 

+ (9) 3 6 1 b 
a 1 1 7 + 
a 4 5 6 ff  

+ (10) 2 1 4 + ]  
a 4 5__~6 

2 4 1 0  

3 6 1 " 
1 211 
2 4 10 b J .  

It can be seen that where there are multiple indica- 
tions they are consistent and, for this structure, that 
pattern is maintained for most of the sign-determining 
process. In step (50) there is found 

(50) 2 1 4 + 2 8 3 bcd 2 4 1 bd 
1 1 1 bc 1 10 2 d 1 6 6 bc 
3 2 5 bc 3 2 5 bc 3 2 5 cd 

which indicates that s(3 2 5) ~ bc and b = d. Later in 
the process, at step (60) there is found 

(60) 2 0 6 bc 1 1 1 bc 1 10 2 d 
2 4 1---0 b 1 5 3 b 1 6 6 bc _ 

0 4 4 c 0 4 4 c 0 4 4 bcd 

8 3 bcd 2 5 10 bcd 1 6 7 c 
2 4 1 bd 2 9 6 bd 1 2 11 + 
0 4 4 c 0 4 4 c 0 4 4 c 

where, once again, there is an indication b~d. 
Actually it turned out that b = d was incorrect and I. 
L. Karle used this example to illustrate that great 
caution must be exercised in accepting such indica- 
tions. 

Some possible combinations of signs for abcdf 
yield too many failures of sign relationships and may 
be rejected. Sometimes it is possible to use the ~ 
formula [(23a)] to indicate one or more of the signs 
and c = + was accepted on this basis. For the sixteen 
(24) possible sets of signs for abdf eight gave rather 
indeterminate sign indications for 34 or more of the 

1 ÷-~ 

C s ( ~ 0 4  

~ C 1 2  

c 2 ~  --d18 ~1~ ~C13 

C 2 ( ~  C19 a 0 

1 0 C s inT "-~ + T 

Fig. 4. Sections of  E map for jamine calculated with 286 terms 
for which IEI> 1.36. 

reflexions being phased and so were eliminated. The 
solution with all symbols positive could also be elimi- 
nated, because this would lead to all positive signs, 
and another set with a large predominance of positive 
signs could also be discounted. The E map which 
showed the structure is shown in Fig. 4. 

The real importance of this systematic approach to 
the application of symbols became evident when 
Karle & Karle (1964a) used a symbolic addition 
procedure in the first direct-methods solution of a 
non-centrosymmetric structure, L-arginine dihydrate. 
It is difficult to overstate the importance of this step. 
Many had thought that the problem of determining 
general phases, which could be anywhere in the range 
0 to 27r, would be impossibly difficult and few were 
inclined even to try to do so. However, once it was 
demonstrated that general phases could be found then 
a great deal of effort was devoted to finding ever 
better processes for doing so. We illustrate the use of 
symbolic addition with material provided by I. L. 
Karle for the NATO Advanced Study Institute held 
in York in 1980. 

The starting set for L-arginine dihydrate, space 
group P2~2121, was 

h IECh)l ~(h) 
2 0 10 3.46 0 ) 
3 3 0 2.17 - ~ r / 2 ~  origin specification 
3 0 1 2-77 7 r /2 )  

2 12 0 3.21 P ) 
2 10 0 2-31 s j~must be 0 or 7r 
4 0 14 2.56 m 

3 8 3 2.31 a. 

For a'non-centrosymmetric structure it is possible to 
specify not only an origin but also an enantiomorph. 
However, Karle & Karle declined to take the oppor- 
tunity of fixing an extra phase in the starting set and 
they specified the enantiomorph later in the process. 

It is instructive to look at a selection of the early 
steps of the development of phases because this illus- 
trates the features which arise in symbolic addition 
with non-centrosymmetric structures. 

(1) 3 0 1 7r/2 (8) 5 3 3 m 
3 3 0 -~r /2  3 3 11 ~r 
6 3 1 0 2 0 8 7r+m 

(2) 3 0 10 zr 1 0 4 m 
6 3  1 0 1 0 4  m 
3 3 11 zr 2 0 8 0 

(3) 4 0 14 m Suggests m = z r  
6 3 i 7r 
2 3 13 ~ + m  (11) 2 0 5 - T r / 2 + m  

(4) 3 0 i - I r / 2  i 0 4 ~r+m 
1 0 9 7r/2 3 3 11 1r 

0 3 10 ~ / 2  3 0 1 7r/2 

3 3 0 -~r /2  2 0 8 z r+m 
0 10 1r 1 0 9 - ~ r / 2 + m  

0 3 10 ~ / 2  Suggests m =  ~r 
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(12) 

(15) 

m 
3 0 10 ~r 
1 3 17 0 
4 3 7 rr 

i 0 4 r r -m 
5 3 3 m 
4 3 7 rr 

1 0 74 ~ ' + m  
3 3 11 zr 
4 3 7 m 

0 8 7r+m 
6 3 i zr 
4 3 7 m 

Suggests m = ~- 

2 12 0 P 
i 0 4 0 
1 12 4 P 

i 12 i 37r/2+P 
2 0 5 zr/2 
1 12 4 P 

3 12 9 zr/2+P 
0 3 -rr/2 

1 12 4 P 

(18) 3 0 10 0 
2 0 8 0 
5 0 2 0 

3 0 T -~r/2 
2 0 3 -Ir/2 
5 0 2 ~" 

3 311 7r 
2 3 13 0 
5 0 2 rr 

First inconsistency. 

The specification of  the enant iomorph came about  
from the following steps: 

(28) 1 10 10 s (31) 3 0 10 7r 
i 0 74 7r 3 8 3  - a  
0 10 6 7r+s 0 8 7 r r - a  

210 6 s 311 74 a 
2 0 12 7r-2a 3 3 11 7r 
0 10 6 ~r+s-2a 0 8 7 zr+a. 

2 10 0 s 
2. 0 6 1r 
0 10 6 zr+s 

Steps (28) suggested that a = 0 or zr, which then made  
the two indications in (31) consistent. I f  we consider  
the two origin-fixing reflexions 301 and 3,0,10 then 
~p(3 0 1) + ~p(3 0 10)+ ~(0 8 7) forms a structure semi- 
invariant  whose value takes one of  the values +~-/2.  
By making a = 0 then the semi-invariant  value is fixed 
at zr/2 and the enan t iomorph  is fixed. 

It was possible to find probable  values for many  
of  the symbols from the Yq formula  which for this 
space group gives 

s(2h O 21) ~ s [~k (-1)k+t{IE ( h k /)12-1} ] = s ( ~ ' )  

(34) 

with similar expressions for s(0 2k 2/) and s(2h 2k 0). 
There is an associated probabil i ty 

P + [ ( 2 h ) ] = l  1 ~+~tanh [cr3[E(2h)[~,~/Ecr3/2]. (35) 

Thus one could find 

2h Symbol P+[E(2h)] 
2 12 0 P 0.14 
4 8 0 ~r+p 0.72 
0 12 8 P 0.27 

and a combinat ion of  these three probabilit ies,  con- 
sidered as independent ,  gives p as 7r with an overall 
probabil i ty of  0.98. 

With estimates for a hundred  or so phases a process 
of  phase refinement and extension was embarked  
upon using the tangent  formula,  (31). The final E 

map for L-arginine dihydrate ,  obtained with estimates 
for 400 phases with IElmi. = 1.00, is shown in Fig. 5. 

This first t r iumph was followed by many  other  
impressive structure solutions of  non-centrosym- 
metric structures from the use of  symbolic addi t ion 
in the laboratory  of  Karle & Karle and in other  
laboratories as well. Karle & Karle relied on the hand  
applicat ion of  symbolic addi t ion - a l though they used 
a fairly small computer  to generate the ~2 relation- 
ships and the phase or s ign-development  tables. 

It was not long before attempts were made  to 
automate  completely the whole process and one of  
the more successful and elaborate programs,  a l though 
only applicable to centrosymmetr ic  structures,  was 
L S A M  (logical symbolic addit ion method)  devised 
by Germain  & Woolfson (1968). This combined ele- 
ments of  the ideas introduced by Cochran  & Douglas  
and by Karle & Karle. A starting set is found with 
origin-fixing reflexions and up to six others to which 
could be a t tached sign symbols. The most probable  
new sign indication was found using the )'.2 relation- 
ship, (23b); this was added  to the starting set and the 
next most probable  sign indication was found.  Some- 
times a relat ionship would be found between symbols 
and these were accumulated;  for example  with six 
letter symbols up to 127 relationships were possible. 
A selection of  these for a part icular  structure with 
space group C2/c  were (with probabili t ies in paren-  
theses) 

Z ~ = - D F = + I  (1.000) Z 4 = A D ~ + I  (0-985) 

Z 2 = A C E F ~ - + I  (1.000) Z s = A E F ~ - + I  (0.966) 

Z 3 = - E F = + I  (0.999) Z 6 = - A B ~ + I  (0-944) 

and these can be inverted to give 

A = -Z3Z5 B = Z3ZsZ6 C = Z2Z5 

D = -Z3ZaZ5 E = - Z ,  Z4Z5 F = Z, Z3ZaZ5. 

L S A M  considers possibilities with up to one, or 
sometimes two, failures in the set Z~ to Z6 and then 

NI2 
Ns N s 

C7 

N l l  

01 H20(2 ) H20o) 

o @ 
3 

C--~ T 

Fig. 5. Sections of E map for L-arginine dihydrate calculated with 
400 terms for which [El > 1.00. 
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with the resultant absolute values of the letter symbols 
develops a complete set of signs for several hundred 
reflexions. Several FOM's were calculated and the 
user could ask for an E map to be calculated for any 
selected set of signs. With the aid of the third-gener- 
ation computers available at the time LSAM could 
solve a complete structure, including production of 
the E map, in 3-4 min. It is now little used, but it 
was a trailblazer for better things to come. 

During this period Hauptman began an extended 
program of deriving formulae for the estimation of 
invariant and semi-invariant quantities. One formula 
suggested (Hauptman,  Fisher, Hancock & Norton, 
1969), with a family resemblance to (32), is, for the 
equal-atom case, 

I E ( h ) E ( k ) E ( h - k )  cos [ ~ p ( h ) - ¢ ( k ) - ~ p ( h - k ) ]  

K(( E .  1/2_ E ,/2)( Eh+.l,/2_ E ,/2)( Ek+. ,/2 

-lull/2)). 
+ 4N-'/2{~[ E(h)E(k)12+iE(k)E(h-k)  2 

+ l E ( h + k ) E ( h )  2]+ E(h) 2+ E(k)2  

+ ] E ( h + k ) [  2-7} (36) 

where [E 1/2 = ( E.ill2)i_I and K is a scale factor chosen 
in such a way that the calculated distribution of 
cosines agreed as closely as possible with the theoreti- 
cal distribution. 

From the application of this formula one may, 
derive estimates of the cosine of three-phase 
invariants in the form 

(cos [~p(h)- q~(k)- ~p(h -k ) ] )~  C(h, k). (37) 

Hauptman and his colleagues then set up a function 

q~= ~ W(h,k){cos [q~(h) -~p(k) -~p(h-k) ]  
h,k 

- C(h, k)} 2 , (38) 

where W(h, k) was a weighting function based on an 
estimate of the reliability of relationships (37). Phases 
are then estimated, one at a time, in such a way as 
to keep • at a minimum value. 

The method worked for the structure of estriol but 
it soon became clear that other methods, simpler to 
apply, would work also. These will be our next topic 
of consideration. 

The computer takes over: 1970-1980 

The early days of structural crystallography involved 
heroic efforts to solve a crystal structure. The collec- 
tion of data was slow, with the use of photographic 
film on various kinds of camera after which each spot 
had to be compared by eye with a standard intensity 
wedge. A single Fourier synthesis, in two dimensions, 
meant two or three days of additions of columns of 
numbers. The computer changed all that: not only 
could the calculations be done more quickly, almost 

effortlessly, but computer-controlled diffractometers 
were developed which, once the crystal was set, would 
automatically collect intensity data. Direct methods, 
in which a large number of relationships had to be 
handled, became a natural application for computers. 

The earliest elaborate program was LSAM, but this 
was soon followed by MULTAN (the multiple- 
tangent-formula method), a program designed to 
solve non-centrosymmetric problems (Germain, 
Main & Woolfson, 1970). The basic philosophy of 
M U L T A N  was decided before the first line of code 
was ever written. It was to be that, to the greatest 
extent possible, what went into the computer was to 
be the minimum information (i.e. unit-cell param- 
eters, space group, cell contents, intensities) com- 
patible with defining the problem and solving the 
structure. Involvement by the user was to be reduced 
to a minimum, ideally none at all, and what came 
out of the computer was to be the structure solution 
in as clear a form as possible. To give the greatest 
portability of the program the language used was to 
be Fortran and only a most basic set of instructions 
was to be used: all special features of the host com- 
puter, no matter how attractive, were to be ignored. 

The basic idea for M U L T A N  was derived from 
consideration of the symbolic addition method. The 
most critical stage in the phase development process 
was early on when only a few, sometimes one or two, 
relationships were available. In symbolic addition 
phase indications can only be combined when the 
symbolic part of the indications is the same. If not, 
then a relationship is obtained between symbols 
which can only later be used to evaluate the symbols. 
Germain & Woolfson (1968) suggested that this prob- 
lem could be overcome by using explicit phase values 
throughout so that different estimates of a new phase 
can always be combined by use of the tangent for- 
mula. The stages in M U L T A N  are: 

(a) ]Ei's are calculated from ]Fobs] values. At this 
stage any known information can be used to derive 
I Ei's which are better at revealing structural informa- 
tion than are the conventional 161 values. 

(b) Y~2 relationships are found for a subset of the 
largest E 's ,  sufficient in number to solve the structure. 
At this stage there are also found the fight-hand-side 
contributors for up to 100 small near-zero IEl's. These 
are to provide a FOM [see (28)]. Estimates of phases 
of structure semi-invariants from ~1 relationships are 
also made at this stage if they are available. 

(c) A starting set is selected in the form of origin- 
and enantiomorph-defining reflexions and a small 
number of others. This is done by a process called 
CONVERGENCE which eliminates reflexions one 
by one from the complete set of large I El's until it 
has converged on a few, which contain those which 
will define the origin and enantiomorph and also 
which will develop new phase information quickly 
and strongly. 



604 DIRECT M E T H O D S -  FROM BIRTH TO MATURITY 

(d) Values are assigned to unknown phases in the 
starting set. This was originally done by 'quadrant 
permutation' where an unknown general phase would 
be considered with four possible values, +z r/4 and 
+3r r/4. Special phases would be given their pairs of 
special values, e.g. + r  r/2 or 0, 7r etc. 

(e) All permutations of phase for starting-set 
reflexions are used as initial values for tangent- 
formula phase extension and refinement. However, a 
weighted tangent formula is used in which the weight 
associated with each contribution depends on the 
estimated reliability of the phases it contains. A 
weighting scheme suggested by Hull & Irwin (1978) 
is sometimes used; this is particularly effective for 
structures without translational symmetry and avoids 
the trivial solution that all phases are zero. 

(f)  FOM's are calculated to rank the phase sets 
in order of plausibility. One of these is a measure of 
how well relationships hold overall, one is like the 
zero check of Cochran & Douglas and the third a 
residual-type function suggested by Karle & Karle. 
This uses values of E(h)catc computed from 

KIE(h)l~a,c= I~ E(k)E(h-k)l 2 

where K is chosen so that 

K Y E(h)l 2 ca l c=  )-', ] E ( h )  2ob s. 
h h 

The residual is 

X I IE(h)lca,c- IE(h)lobsl 
RKarle = h (39) 

Y. IE(h)lobs 
h 

The three FOM's are united into a single combined 
figure of merit (CFOM) which would equal 3.0 for 
a set of phases best for each individual FOM and 0 
for a set worst for each FOM. 

(g) For the highest value of CFOM, or any other 
set specified by the user, an E map is calculated. The 
positions of a number of the highest peaks (usually 
1.25 x number of atoms to be found) are output on 
lineprinter paper in a favourable (spread-out) projec- 
tion together with tables of 'bond' lengths and 'inter- 
bond' angles for the peaks and suggested chemical 
interpretations (Main & Hull, 1978). 

An example of a M U L T A N  output is shown in 
Fig. 6. It will be seen that there are some spurious 
peaks, inevitably so since there are more peaks than 
atoms, and some atoms may not appear. In an extreme 
case only a small fragment of the structure may appear 
and then one has the problem of trying to build from 
this to the complete structure. Karle (1968) suggested 
a process for doing this which is incorporated into 
M U L T A N .  The fragment is used to compute partial 
structure factors, F(h)p, and the phase it indicates is 

accepted if 

I F(h)pl > Pl Fobsl. (40) 

The chosen value of p is governed by a set of rules 
but is usually in the range 0.25 to 0-6. Accepted phases 
are then put into the tangent formula and phase 
information is extended and refined. The following 
E map, if it does not show most of the structure, 
should show more of it and the process is repeated 
until conventional refinement processes can take over. 

Over the years M U L T A N  has become a generic 
name for a variety of methods for generating phases 
all incorporated in a single package. Two of these, 
developed in the period under consideration, are 
worthy of mention. White & Woolfson (1975) intro- 
duced a concept which they called 'magic integers'. 
This states that if there are n phases (in cycles) with 
values ~i ( i=  1 to n) then one can select a set of 
integers mi (i = 1 to n) such that 

~, ~ m,x (mod 1) 

for some value of x in the range 0 to 1. 
As an example, by use of three variables, x, y, z, 

12 phases may be represented by 

12 (x y z). 
14 

15 

Since phases can be represented in magic-integer 
form, so can the linear combinations of them forming 
TPR's, and a typical TPR will be in the form (in 
cycles) 

~3,r = Hrx+ Kry+ L,e+ br, (41) 

where the br results from specifying phases corre- 
sponding to reflexions in one asymmetric unit of 

2 J 2 ~ ,  

~ 1 7  / 18 
9 ~  ~ 1 ;  33 / 

/ 1 3 ~  \ / 
12 / ~14 ~ 3 0  

\ .16 / 

26 --~ 

32 

Fig. 6. Representat ion of  a typical MULTAN output.  The dashed 
lines are bonds  to missing peaks while some spurious peaks are 
also seen. 
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reciprocal space for some higher space groups. Since 
the values of @3 are expected to be close to 0 (mod 1) 
then one can design a function 

d/(x,y,x)=~.,r,r[cos2"rr(Hrx+Kry+Lrz+br)] (42) 
r 

which should be large. The right-hand side can be 
summed as a Fourier map and peaks in it give values 
of (x, y, z) and hence plausible values for the magic- 
integer-represented phases. 

This principle has been extended in a number of 
papers and Declercq, Germain & Woolfson (1975) 
showed how it could be used effectively to get a 
starting set of 50-60 phases for tangent-formula 
extension. Many structures for which initial runs of 
M U L T A N  failed have succumbed to a single run of 
the program MAGIC.  

The magic-integer principle solves the problem of 
how to populate a many-dimensional phase space as 
uniformly as possible with a given number of points. 
A complete theory has been worked out by Main 
(1977). In fact, from 1980 phase permutation, 
described as stage (d) in the M U L T A N  description, 
has been replaced by magic-integer permutation. 

The second development incorporated into the 
M U L T A N  package had a rather serendipitous origin. 
Woolfson (1977) proposed an idea for refining phases 
by expressing TPR's as linear equations so that, with 
phases in cycles, a TPR was of the form 

~or + ~0s + ~0t + b ~ n, an integer. 

The value of n could be estimated as the nearest 
integer to the left-hand side with current phase values 
substituted and a complete set of equations appears as 

Aq~ + b ~ n. (43) 

A least-squares solution for ~o gives 

q~ = (ATA)-IA 7-(n - b), (44) 

which gives new phase estimates for another cycle of 
refinement. Early trials showed that the phases so 
obtained had less error than those derived from the 
tangent formula. 

For any refinement process it is rational to try to 
find its radius of convergence. A systematic investiga- 
tion of this, in which the initial phase errors were 
gradually increased, gave the surprising result that in 
a significant proportion of trials initially random 
phases would refine to correct values. 

It turns out that starting with random phases has 
some advantages over the conventional M U L T A N  
approach. If a convergence map is followed by sym- 
bolic addition it is often found that the first few steps 
give completely consistent, and sometimes wrong, 
phase indications so that no matter what are the 
starting phases in M U L T A N  the process will go 
wrong. If a start is made with a large number of 
random phases then so many phase relationships are 

being deployed simultaneously that the idiosyncratic 
behaviour of a few of them does little harm. Some 
versions of M U L T A N  contain a program Y Z A R C  
which exploits the idea of starting with random phases 
and refining with linear equations. This too is often 
successful when M U L T A N  fails. 

In parallel with the development of methods of 
applying TPR's,  a great deal of work was in progress 
to find formulae from which the values of phase- 
dependent structure invariants could be estimated. 
The leading figure in this work was Hauptman (1975) 
who put forward what he called 'the neighbourhood 
principle'. This stated that, for a particular enan- 
tiomorph, the value of a structure invariant could be 
estimated by the values of one or more sets of few 
magnitudes E ,  the neighbourhoods of the structure 
invariant. As an example of the application of this 
principle we consider the structure invariant known 
as a quartet, which has had some applications in 
practical direct methods. This is 

where 

q~4 = ~o (h) + ¢p(k) + ¢p (1) + ~0 (m) (45) 

h + k + l + m = 0 .  

If IE(h)l, IE(k)l, IE(l)l and IE(m)l are all large then 
it can be shown that the probability distribution of 
(/)4 resembles that of ~3, shown in Fig. 3. However, 
on the basis of the neighbourhood concept there are 
three other magnitudes which strongly influence the 
value of ~4; these are 

[E(h+k)l, IE(h÷l)l and IE(h÷m)l, 

usually referred to as the 'cross terms'. Hauptman 
has shown that if the cross terms are all large then 
the conclusion that ~ 4 ~ 0  (modulo 27r) is strongly 
reinforced - a probability density curve would be 
found, as in Fig. 7(a),  which had a much smaller 
variance than that found just from the four main 
magnitudes. An interesting case arises when the cross 
terms are all small. The distribution now appears as 
in Fig. 7(b) and leads to the conclusion that ( /)4 ~ "/'l" 
(modulo 27r); such a combination of four phases is 
called a 'negative quartet' .  It is proper to mention 
here that the concept that the magnitudes of the three 
cross terms controlled the probable value of a quartet 
originated with Schenk (1973a), Schenk & de Jong 
(1973) and Schenk (1973b). Intermediate cases can 
also arise where, for example, two of the cross terms 
are large and one small, when a bimodal distribution 
as shown in Fig. 7(c) may result. 

The neighbourhood principle has been applied 
with more magnitudes (e.g. 15) to estimate quartets 
and also to estimate triples (TPR's), quintets, sextets 
etc., but these latter have more curiosity than practical 
value - at least at present. 
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Work along similar lines to estimate the values of 
structure invariants and semi-invariants has been pur- 
sued by Giacovazzo (1977), using what he calls the 
'theory of representations'. This leads to a concept of 
'phasing shells' which are similar to, but not the same 
as, the neighbourhoods of Hauptman. There has been 
some debate about the relative merit of the two 
approaches; it is probably fair to say that the phasing 
shells give a more complete selection of relevant 
magnitudes but that the neighbourhood principle 
picks out of them those that are most important. The 
principle of neighbourhoods or representation theory 
is included implicitly in a general theory of invariants 
and embedded semi-invariants given by Karle 
(1982a). 

Quartets have been used in various ways in direct 
methods. A four-phase invariant may be used to esti- 
mate one phase when three others are known and 
they may thus be incorporated into the phasing pro- 
cess of, say, MULTAN.  This has been done by 
Gilmore (1984) in the program MITHRIL,  which 
contains M U L T A N  as its main component but 

-71" 
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- T r  0 7I" 
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Fig. 7. Possible distribution functions for a phase quartet with (a) 
all cross terms large, (b) all cross terms small, and (c) cross 
terms not all large or all small. 

includes other methods as well, by Sheldrick (1975) 
in the program SHELX which also incorporates the 
M U L T A N  approach, and by Overbeek & Schenk 
(1978) in SIMPEL, an automated symbolic addition 
programme. The quartet contributions to phasing 
have usually been incorporated within a modified 
tangent formula of the form 

tan [q~(h)] = (B+  D ) / ( A + C )  (46) 

where 

B = E I E ( k ) E ( h - k ) l s i n [ ¢ ( k ) + q ~ ( h - k )  ] (47a) 
k 

A=EIE(k)E(h-k)lcos[~(k)+,p(h-k)] (47b) 
k 

D= n Y. Y. [ E ( l ) E ( m ) E ( h - l - m ) ]  
I m 

x sin [q~(l) + ~(m) + q~(h- 1 -  m)] (47c) 

and 

C = n ~ ~ ] E ( l ) E ( m ) E ( h - i - m ) l  
I m 

x cos [~(1)+ q~(m)+ ~ ( h - 1 - m ) ] ,  (47d) 

where n is a positive constant chosen either empiri- 
cally or from a theoretical base depending on the 
probability distributions of the triplets and quartets. 

By and large, the most useful application of the 
quartets has been of negative quartets, the sum of 
four phases with a probability density peaked at 7r. 
In the space groups P1, P1, and other symmorphic 
space groups, these are a way of introducing negative 
relationships between signs or non-zero differences 
between phases where, otherwise, the trivial solution 
q~ =0  (or s =+1)  for all phases (signs) satisfies all 
three phase (sign) relationships. Negative quartets 
have also been found to give a useful FOM. De Titta, 
Edmonds, Langs & Hauptman (1975) proposed the 
FOM 

NQEST= ~ IE41, c o s  IE4l,, (48) 
i / i  

where the qb4.i are negative quartets and IE4~ is the 
appropriate product of four strong [E I's. The summa- 
tion is made over as many strong negative quartets 
as are available (usually up to 99) and the most 
nesative value of NQEST usually indicates the correct 
solution. 

It was in this period that the first applications of 
direct methods were made to protein structures. The 
great triumphs of protein crystallography had resulted 
mostly from the application of the multiple-isomor- 
phous-replacement (MIR) method. By comparison 
of the intensities from a native protein and several 
isomers, usually produced by adding heavy-atom- 
containing groups to various points of the protein 
chain, estimates of phases can be made. These are 
usually rather imprecise (r.m.s. error 40-50 °) and 



M. M. WOOLFSON 607 

restricted to low-resolution reflexions because of the 
limited extent of isomorphism of the compounds. 
Techniques for phase extension and refinement are 
required both to improve the knowledge of low-reso- 
lution phases and also to extend phase knowledge to 
higher resolution. Most early methods involved 
density modification - i.e. production of an electron 
density map, modification of it to conform to some 
required property and then transformation of the map 
to estimate new phases. 

An extension of the use of Karle-Hauptman deter- 
minants [(14)] was proposed by Tsoucaris (1970) with 
his maximum determinant rule. One property of the 
Karle-Hauptman determinants which was given by 
Goedkoop (1950) and Hauptman & Karle (1950a) is 
that when the order of the determinant is greater than 
the number of atoms in the unit cell, N, then its value 
equals zero. For a determinant of order m-< N the 
value is positive and, in addition, all the eigenvalues 
of the Karle-Hauptman matrix must be positive. 

With this background we can now state the 
maximum determinant rule: Assume that all the struc- 
ture factors are known, in magnitude and phase in 
D,,, a determinant of order m. If a new determinant, 
Din+l, is constructed by adding a new row and column 
the most probable phases of the ( m +  1)th row (or 
column) are those which lead to the maximum value 
of Dm+l under the condition that the matrix eigen- 
values are all positive. 

This rule has been used to extend phases in protein 
crystallography (Mauguen, 1979) by the use of what 
is known as the 'regression equation' which expresses 
the most probable value of one structure factor as a 
function of all the other structure factors in D~+I (de 
Rango, Tsoucaris & Zelwer, 1974). With this iterative 
procedure a maximization of Dm+l is possible by 
gradual modification of the phases in the final 
column. 

Another pioneering venture in phase extension and 
refinement was carried out in this period by Sayre 
(1972, 1974). This was done by the use of the Sayre 
equation (18) and an iterative full-matrix least- 
squares process for deriving phases which minimizes 
the function 

S ( ~ ) = ~  w(h) lF(h) -O(h)  ~ F ( k ) F ( h - k ) ]  2, (49) 
h k 

where w(h) is a weight. The method was effective but 
very costly in computer time. For rubredoxin and 
insulin (Cutfield, Dodson, Dodson, Hodgkin, Isaacs, 
Sakabe & Sakabe, 1975), 2.5 and 1.9 ~ heavy-atom 
phases were used as input data and the phases were 
extended to 1-5 ~ to give readily interpretable maps. 

The Sayre method represents a very effective way 
of using sheer brute computer power. However, such 
work can only be done in a few places, well favoured 
with computer resources. 

A development of this period, which may become 
important as massive computer power becomes avail- 
able, is the development of a generalized tangent 
formula by Karle (1971). This is based on the deter- 
minantal inequalities and is of the form 

~0(h) = phase of {~ 8m,p(h)}, (50) 

where 8m.p(h) is a ratio of two order m - 1  deter- 
minants derived from the basic order m Karle- 
Hauptman determinant, 

D,,,,p (h) = 
E(0) E(k,) ' ' - E  (k,._2) E(h) I 
E(kl) E(0) . E(k, - k,,,_2) E ( k l - h )  

I E(k2) E(.h2- kl) E(.k2- kin-2) E(.k2- h) 

E("km-2) E(km_2-kl) E('0) , E('km_E-h) 
E(h) E ( h - k  1) E(h-km_2) E(0) 

(51) 

and p indicates a particular set of vectors kl to kin-2. 
For m = 3 the result is the normal tangent formula 

(31). Larger values of m yield formulae giving better 
estimates of ¢p (h) although at the expense of increased 
computation. Indeed, for a high enough value of rn 
the phase, ~o(h), may be given precisely. 

M o d e r n  t i m e s :  1 9 8 1 - 1 9 8 6  

The early years of the 1980's saw the extension of 
earlier work in developing methods of solving small 
structures. Programs such as SIMPEL and S H E L X  
were extended and made more versatile and there 
was also a move in the direction of making these 
programs, and M U L T A N ,  available on minicom- 
puters and even microcomputers, and in extending 
their use to structures with abnormal features, e.g. 
those with pseudo-translational symmetry (Fan 
Hai-fu, Yao Jia-xing, Main & Woolfson, 1983). 
However, there were also some interesting new con- 
cepts introduced which extended either the range of 
applicability of direct methods or at least the 
efficiency of their application. 

An interesting development of the 'random' 
approach was made by Yao Jia-xing (1981) in the 
development of R A N T A N  - random MULTAN.  The 
advantages of the M A G I C  and Y Z A R C  approaches 
in increasing the size of the starting set of reflexions 
has already been mentioned. Yao took this to its 
logical limit by doing without a starting set - or, 
perhaps more precisely, taking all the structure factors 
whose phases were needed as the starting set. In this 
multisolution method, for each trial random phases 
are allocated to all structure factors, other than those 
picked to fix the origin and enantiomorph, and these 
phases are then refined by a very controlled use of 
the weighted-tangent formula. The effectiveness of 
this method was demonstrated for many structures - 
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for example complex 2 enniantin C : I  KSCN, with 
space group P2~ and 100 atoms in the asymmetric 
unit (Yao Jia-xing, 1983). After making 78 trials 
R A N T A N  stopped automatically, since it found 
good figures of merit, and the resulting E map showed 
85 of the 100 atoms to be found. Yao also tried his 
method on a synthetic structure in space group P1 
containing three molecules ofvalinomycin, giving 234 
atoms to be found. Although he degraded the calcu- 
lated structure factors to simulate the quality of 
observed data he was still able to solve the structure, 
finding 192 atoms in the first E map he examined. 
The R A N T A N  principle is so effective that it has 
been incorporated as the default method in the 
MUL T A N  system. 

In his 1983 paper Yao a|so demonstrated how the 
R A N T A N  principle could be used as a powerful 
method of fragment development by a multisolution 
approach. A number of phases were accepted by 
means of the Karle criterion given in relationship (40) 
and to all remaining reflexions, whose phases did 
not satisfy the relationship, random values were 
assigned. These phases were then taken through the 
R A N T A N  process. Usually, in comparatively few 
trials, a set of phases with good FOMs would be 
found showing most of the structure. One example 
of this process was with the known structure of vir- 
giniamycin factor-S methanol solvate (Declercq, 
Germain, Van Meerssche, Hull & Irwin, 1978) with 
66 independent atoms in space group P2~2121. 
Neither M U L T A N  nor R A N T A N  could solve it in 
a straightforward way but by starting with the posi- 
tions of 12 atoms the structure could be obtained by 
Karle recycling, successive cycles giving 16, 26, 42, 
66 atoms. With the R A N T A N  method, starting with 
only six known atom positions, the fifth trial gave 
good FOMs and showed 52 atoms. 

Another approach of a rather general kind has been 
described by Debaerdemaeker & Woolfson (1983). 
They considered a number of functions of the phases, 
which would be expected to be either a maximum or 
minimum, and then from a starting point of random 
phases they refined to the required extremum by a 
parameter-shift process. This involves changing the 
phases, one at a time, over a range of values and 
taking the best value in the range. In fact this is what 
is done by the tangent formula. The function being 
maximized is 

Q=ZY~ K(h,k) cos[~p(h)-q~(k)-q~(h-k)] .  (52) 
h k 

A maximum requires OQ/O~p(h) = 0 for all h and appli- 
cation of this condition gives 

E g(h,k) s in[~p(h)-¢(k)-q~(h-k)]=0.  (53) 
k 

A rearrangement of this equation gives the tangent 
formula, (31). The value of ~o(h) so found gives the 

maximum value of Q, given all the current values of 
other phases - which is the basis of the parameter-shift 
approach. 

An example of a function to be maximized, 
explored by Debaerdemaeker & Woolfson (1983), is 

where 

~c =E IX(h)- [ Y(h)[] (54) 
h 

X(h):~K(h ,k)cos [q~(h) -q~(k) -¢(h-k) ]  (55a) 
k 

and 

Y ( h ) = ~  K(h,k) sin[q~(h)-q~(k)-r,o(h-.k)]. (55b) 
k 

Maximization will tend to give the greatest possible 
value of the summation over X(h), which is 
equivalent to Q in (50), while having the smallest 
possible value for the summation over I Y(h)l. By 
chance, owing to a mistake in the computer program- 
ming a much better and very powerful function to be 
maximized was found, namely 

qJo = E I X ( h ) -  Y(h)]. (56) 

There is no rational basis for using this function but, 
nevertheless, maximizing qJo vies in power with any 
other method found and has accounted for numerous 
successful crystal-structure solutions with up to 200 
independent atoms. If the X - Y  method has been 
described in some detail it is to underline the fact 
that serendipity has as powerful a role to play as the 
intellect in this as in many other branches of science. 

The majority of the methods described so far 
depend on probabilistic relationships between 
phases, but it might be expected that a phase-deter- 
mining procedure based on an exact relationship 
would be stronger. Debaerdemaeker, Tate & 
Woolfson (1985) devised a new tangent formula 
based on satisfying the Sayre equation. Following the 
philosophy by which the normal tangent formula 
could be derived by maximizing Q, in (52), they 
looked at the minimization of 

= Z IE(h)- KG(h)I2/Y IE(h)I 2, (57) R 
h [ h  

where 

G(h)=[1/g(h)]~,  E ( k ) E ( h - k )  (58) 
k 

and g(h) is known. If a value of K can be found 
which makes R = 0 then Sayre's equation would be 
exactly obeyed for the data set. The value of K could 
be found from 

~R/~K =0, (59) 
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and then phases had to satisfy the condition 

OR/O~p(h) = 0 for all h. 

This led to the result 

(60) 

Im[t(l)]-(2T/3Q) Im [q(l)] 
tan [~(l)] = (61) 

Re [t(l)]-(ET/3Q) Re [q(1)] 

where 

t(l) = E [ 1 / g ( l )  + 1 / g(h)  + 1 / g(!  - h) ]l E (h) E (I - h )l 
h 

x exp { i[ ~p(h) + ~p(l- h)]} (62) 

q(l) = I E ( l - h ) l  exp [ i~o(1- h)][ 1/g(h) 2] 
h 

x y. IE (k )E(h -k ) l  exp {i[~p(k) + q~(h- k)]} 
k (63) 

T = E  E(l)*t(l) (64) 
I 

and 

Q = E E(l)* q(l) = E IG(h)l 2. (65) 
I h 

The terms in q(l) come from a special set of quartet 
relationships, those with E(I), E ( l - h ) ,  E(k) and 
E ( h - k )  belonging to the set of large E's  but with 
the cross terms E(h) belonging either to the set of 
large E's or to a selected set of small (ideally zero) 
E's. The net effect of the refinement is to produce a 
set of phases for the large E's which satisfy Sayre's 
equation both for large E's and small E's. This is the 
first example of the explicit routine and large-scale 
use of small-E data to determine phases - although 
their use might be implicit in some determinantal 
methods with small E's as elements, and small E's 
had been used in the E 3  formula [(23c)] in some early 
work. Despite its apparent complexity the Sayre 
tangent formula, (59), is simple to apply and takes 
only one and a half times as long to refine a set of 
phases as does the normal tangent formula. The mode 
of use is to use trial sets of random phases, as in 
RANTAN, and the final phase sets are judged by the 
same figures of merit as are used in the conventional 
MULTAN procedure. The Sayre tangent formula 
method, incorporated as SA YTAN in the most recent 
MULTAN package, is considerably more powerful 
than those using the conventional tangent formula 
with a power only matched by the enigmatic X -  Y 
technique. 

The combination of triplet and quartet terms which 
appear in the Sayre tangent formula also occurs in 
the modified tangent formula (46) although with the 
sign of the quartet term reversed. The generalized 
tangent formula (50), with m =4, also gives triplet 
and quartet terms, in this case with different weights 
from those indicated in (61). Although the generalized 

tangent formula, in the form given, has never actually 
been applied it is possible that it would give similar 
results to formula (61), although it may be difficult 
systematically to choose terms in the summation in 
(50) so as to include a particular set of large and 
small IEl's. 

A great deal of interest and high expectations were 
raised in this period from the introduction of the idea 
of applying the maximum-entropy method (MEM) 
to macromolecular crystallography. The MEM had 
enjoyed much success in the field of astronomy, where 
it had resulted in great improvements in the images 
of radio sources, and the processes of phase 
refinement and extension, where the aim is to improve 
a rather faulty image, seemed to lend themselves to 
the same treatment. Basically the method involves the 
maximization of an entropy function; the two which 
had been used are the Burg entropy function 

S~ =~ln  (p) dV (66) 

and Jaynes' entropy function 

S~ = - ~  p In (p) dV. (67) 

The idea of applying the MEM to crystallography 
originated with Narayan & Nityananda (1981, 1982) 
who favoured the Burg entropy function, but the most 
complete treatment was by Bricogne (1984) who used 
instead Jaynes's function. Bricogne demonstrated the 
application of the MEM to data from a small protein, 
but the data were calculated from the known structure 
and of a quality unattainable in practice. The gain in 
resolution was real and unmistakeable, but not 
impressive, and no application to an unknown struc- 
ture with real data has been reported. 

In fact Collins (1984) has shown that satisfying 
Sayre's equation is the equivalent of maximizing 
Jaynes's entropy function by changing only phases. 
Since, as is well known to crystallographers, phases, 
rather than magnitudes, contain most of the structural 
information it seems likely that a Sayre-equation- 
based method might confer most of the benefit of the 
MEM. Narayan & Nityananda (1982) have also 
shown that maximization of the Burg entropy is 
equivalent to satisfying the maximum-determinant 
condition of Tsoucaris (1970). It seems that entropy 
maximization is adding nothing completely new to 
the crystallographic scene and, since it involves a 
great deal of effort, perhaps nothing useful. 

A range of work which is new, however, involves 
a combination of direct methods with either isomor- 
phous-replacement data or data from anomalous scat- 
tering. For example, Hauptman (1982) has developed 
equations for estimating three-phase invariants if data 
are available from two isomorphous crystals. The 
method was applied to calculated error-free data for 
a protein (Hauptman, Potter & Weeks, 1982), giving 
reliable estimates for many thousands of three-phase 
invariants which were close to 0 or 7r. However, no 
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application to real data has been reported. If the 
heavy-atom structure is known then Fortier, Moore 
& Fraser (1985) have shown how to estimate three- 
phase invariants in the range 0 to 2rr. 

A simple rule for estimating three-phase invariants 
has been given by Karle (1984a, b) in the case that 
a heavy-atom derivative is available. If subscript p 
represents 'protein' and pH 'protein+heavy atom' 
then the rule is: 

' I f  the sign of the product 

([ F(h),H I- IF(h), I)(I F(k),H I- IF(k),l) 
x( F(h+k)p,l-lF(h+k)p ) 

is positive then the value of (q~(h)- q~(k)-q~(h+k)) 
is close to zero while if the sign is negative the average 
invariant is close to 7r.' The average invariant in this 
case is the average of the eight values 

~(h)  A + ¢p(k)~ - ~p(h + k)c ,  

where A, B and C can each be p or pH. 
The sign will be a good indication for individual 

phase triplets if the corresponding value of 

F(h)AF(k)BF(h + k)c 

is large. If the heavy-atom structure is known then 
Karle (1986) has shown how it is possible to derive 
a good estimate between 0 and 27r for a three-phase 
invariant. 

The single-isomorphous-replacement (SIR) 
method has the property that it leads to an ambiguity 
in estimating phases. Fan Hai-fu (1983) and Fan 
Hai-fu, Han Fu-son, Qian, Jin-zi & Yao Jia-xing 
(1984) have shown that by the use of probability 
formulae, based on the concepts of direct methods, 
the phase ambiguities could be broken. The same 
method could be applied to one-wavelength 
anomalous scattering (OAS) data which also give an 
ambiguity in phase. The method has been applied to 
real data for APP (avian pancreatic polypeptide) 
where the native protein and a derivative containing 
mercury were available. It was clear from the quality 
of the results obtained with OAS data of the Hg 
derivative that the structure would have been solved 
directly from this approach. 

Other workers have developed techniques for ally- 
ing direct methods with anomalous scattering data. 
Karle (1980, 1982b) has described a method whereby 
from data at several wavelengths linear equations can 
be set up and solved for quantities which include the 
magnitude squared of the structure factors of the 
anomalously scattering atoms alone. If these atoms 
form a simple structure then this can be solved from 
a Patterson map or by direct methods and thence the 
whole structure can be determined. The same general 
idea, where there is only one kind of anomalous 
scatterer and where only measurements at two 
wavelengths are needed, has been given by 

Cascarano, Giacovazzo, Peerdeman & Kroon (1982) 
and Woolfson (1984). Furthermore, Karle (1985) has 
shown that with only one type of anomalous scatterer 
the problem may be solved with data from one 
wavelength. 

Finally, it must be mentioned that the first tentative 
steps are being taken to obtain phase information 
directly from experiment. When a crystal is positioned 
so that two diffracted beams are produced simul- 
taneously then the profile of the beams can give 
information about the triple-sign product (21) or the 
three-phase invariant (29a). Post (1979) gave first 
results for centrosymmetric structures and Hiimmer 
& Billy (1986) have given a very convincing 
demonstration of the technique applied to non- 
centrosymmetric crystals. 

The crystal ball: 1987- 

The purely physical methods to which reference has 
been made have so far only been applied to very 
simple structures, which could be easily solved by 
other methods, at a cost of experimental time which 
would be prohibitive for routine application. If the 
method can be made faster and applicable to more 
complicated structures then it will overtake all other 
procedures and make them redundant. Such progress 
cannot be expected in the short term but, given the 
history of development in crystallography, it must be 
seen as a possibility. 

The hybrid methods, in which the concepts of direct 
methods are linked with SIR or OAS, look far more 
promising in the shorter term. There can be little 
doubt that such methods may begin to dominate in 
the next decade, especially with the increased availa- 
bility of synchrotron sources so that the wavelengths 
used may be tuned to particular theoretical needs. 
The multiple-wavelength anomalous scattering 
method described by Karle could be very relevant 
here. 

There is little doubt that the MEM is, from a 
theoretical point of view, the ultimate technique in 
terms of extracting information from the data. 
Bricogne (1984) has realized that, powerful although 
it is, it cannot be relied upon to lead from whatever 
starting point one has to the correct solution by a 
unique and unequivocal pathway. Thus, the algorithm 
he describes for ab initio structure solution is a multi- 
solution one with an expanding tree-like structure 
and where unlikely branches are lopped off from time 
to time to constrain the problem to manageable pro- 
portions. Nevertheless the process, which involves 
repeated applications of Fourier transformation, is a 
costly one and the present evidence does not suggest 
that the performance is commensurate with the cost. 

As has been previously mentioned it seems that 
most of the theoretical benefit of the MEM is gained 
by finding a set of phases which satisfy the Sayre 
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equation - and that is exactly what is done by the 
application of the Sayre tangent formula. Whether or 
not the Sayre tangent formula can be a cheaper 
alternative to the MEM is yet to be explored; certainly 
it will be much cheaper to apply and may more than 
compensate for its slightly lesser theoretical power 
by enabling a much larger number of trials to be 
carried out in a multisolution mode. 

The general practice in macromolecular work has 
been to devise single-path techniques - and this is 
understandable since the computational task for such 
structures can be quite massive. For small structures 
experience has shown that multisolution methods are 
far more powerful; indeed, it is not even certain that 
single-path methods will work at all for most struc- 
tures. The only logical way to progress in a single-path 
method is to go forward in the most obvious direction 
at every stage, and this is rarely the correct path in 
the early stages. The same must certainly be true for 
macromolecular structures. With a high increase in 
available computer power and speed the right way 
to progress must be to incorporate a multisolution 
approach. As an example, one method of phase 
extension and refinement may be to accept estimates 
of low-resolution phases from isomorphous-replace- 
ment data and then populate the outer region of 
reciprocal space with random phases for selected 
large structure factors and refine with the Sayre 
tangent formula. In the last few cycles the inner 
phases can be allowed to change to fit in which the 
overall phase pattern. A number of trials will give 
phase sets reasonably consistent with the original 
isomorphous-replacement data and satisfying Sayre's 
equation. Whether or not this idea will work or be as 
good as might be achieved, with more effort, by the 
MEM remains to be seen. It does have some of the 
character of Yao's method of building on a fragment, 
which is also a multisolution approach to using partial 
information to derive the whole structure. In one case 
the information which grows is the number of atomic 
positions; in the second case it is the resolution. 

A multisolution approach may enable ab initio 
solutions of proteins to be contemplated. At the 
lowest resolution when an electron density map 
begins to show recognizably correct features, the 
number of data being deployed is not too large - 
comparable indeed to the number used to solve a 
normal small structure. If suitable phase relationships 
can be found, based on whatever physical criteria are 
appropriate at the resolution in question, then it is 
conceivable that a finite number of low-resolution 
maps could be generated, including a correct one. 
Phase refinement and extension might then take over. 

A famous nuclear physicist was once asked in the 
early 1950's what he thought nuclear physicists would 
be doing ten years thereafter. His response was that 
if he knew then he would be doing it now. If the 
author knew what crystallographers would be doing 

at the end of the century you may be sure that he 
would be doing it now! 

Thanks are due to referees whose comments led to 
considerable improvement in the article. 
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Abstract 

An analysis is presented for the Tammes problem: 
how must n points be distributed on the surface of 
a sphere in order that the minimum angular distance 
between any two of the points be a maximum? With 
the analogy of the capsid structure of small 'spherical' 
viruses, locally extremal arrangements are construc- 
ted in tetrahedral, octahedral and icosahedral sym- 
metry. Thirty arrangements defined by four packing 
sequences are investigated. By the applied construc- 
tion process, novel locally extremal configurations 
for n = 78, 96, 108, 144, 150, 192, 198, 270, 360, 372, 
480, 492 and improvable configurations for n = 114, 
282 are obtained. A table is given of the investigated 
arrangements; most of them are putative solutions of 
the Tammes problem. 
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Introduction 

Consider the problem of the closest packing of n 
equal non-intersecting spheres on the spherical sur- 
face investigated by Mackay, Finney & Gotoh (1977). 

This 'hard-sphere' problem, mentioned as the Fejes 
problem (Fejes T6th, 1972) by Mackay, Finney & 
Gotoh (1977) but better known as the Tammes prob- 
lem (Tammes, 1930; Fejes T6th, 1964), has several 
equivalent formulations. Melnyk, Knop & Smith 
(1977) enumerated the different formulations of this 
purely geometrical problem but presented also a phy- 
sical interpretation of it as an extreme case of finding 
equilibrium configuration where n points on the sur- 
face of a sphere repel each other according to the 
inverse power law. Namely, when the exponent of 
the power tends to infinity, the smallest distance 
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